Steel Beam Moment Strength

Flexural strength of a steel wide-flange beam section.

Assumptions

[ASSUME] AISC 14th Edition controls design [ASSUME] Beam web is unstiffened

Inputs

Beam ultimate moment demand;	$M_u = 30 \text{ kip} - \text{ft}$
Beam unbraced length;	$L_b = 20 \text{ ft}$
Beam section size;	section = W18X40
Steel yield strength;	$F_y = 50$ ksi
Steel ultimate strength;	$F_u = 65$ ksi
Modulus of elasticity;	$E=29000~\mathrm{ksi}$
Lateral-torsional buckling modification factor;	$C_b = 1$

Section Properties

b = 6.02 in d = 17.9 in $S_x = 68.4 \text{ in}^3$ $Z_x = 78.4 \text{ in}^3$ $r_y = 1.27 \text{ in}$ $r_{ts} = 1.56 \text{ in}$ $J = 0.81 \text{ in}^4$ $h_o = 17.4 \text{ in}$ $b_f/2t_f = 5.73$ $h/t_w = 50.9$

1. Beam Flexural Capacity

```
Flexural resistance factor:
```

 $\phi_b = 0.9$

1.1. Section Compactness

$$\lambda_{pf} = 0.38 \cdot \sqrt{\frac{e}{F_y}} = 0.38 \cdot \sqrt{\frac{2.718}{50 \text{ ksi}}}$$
$$\therefore \lambda_{pf} = 0.0886$$
$$Check \ b_f/2t_f \leq \lambda_{pf}$$
$$5.73 \leq 0.0886$$

 $\therefore ERROR: NotCompactFlange$

$$\lambda_{pw} = 3.76 \cdot \sqrt{\frac{e}{F_y}} = 3.76 \cdot \sqrt{\frac{2.718}{50 \text{ ksi}}}$$
$$\therefore \lambda_{pw} = 0.8767$$

Check $h/t_w \leq \lambda_{pw}$ $50.9 \leq 0.8767$ $\therefore ERROR : NotCompactWeb$

1.2. Plastic Moment Strength

Nominal plastic moment strength:

$$M_p = \frac{F_y \cdot Z_x}{12 \text{ in/ft}} = \frac{50 \text{ ksi} \cdot 78.4 \text{ in}^3}{12 \text{ in/ft}}$$
$$\therefore M_p = 326.7 \text{ kip} - \text{ft}$$

1.3. Yielding Strength

$$M_{ny} = M_p = 326.7$$

 $\therefore M_{ny} = 326.7 \text{ kip} - \text{ft}$

1.4. Lateral-Torsional Buckling

[AISC Table B4.1b(10)]

[AISC Table B4.1b(15)]

[AISC Eq. F2-1]

[AISC Eq. F2-1]

$$\begin{split} L_p &= \frac{1.76 \cdot r_y \cdot \sqrt{\frac{e}{F_y}}}{12 \text{ in/ft}} \\ &= \frac{1.76 \cdot 1.27 \text{ in} \cdot \sqrt{\frac{2.718}{50 \text{ ksi}}}}{12 \text{ in/ft}} \\ &\therefore L_p &= 0.04343 \text{ ft} \end{split}$$

$$c &= 1 \\ L_r &= \frac{\frac{1.95 \cdot r_{ts}}{12 \text{ in/ft}} \cdot E}{0.7 \cdot F_y} \cdot \sqrt{\frac{J \cdot c}{S_x \cdot h_o}} + \sqrt{\left(\frac{J \cdot c}{S_x \cdot h_o}\right)^2 + 6.76 \cdot \left(\frac{0.7 \cdot F_y}{e}\right)^2} \end{aligned}$$
[AISC Eq. F2-5]
[AISC Eq. F2-5]

$$=\frac{\frac{1.95 \cdot 1.56 \text{ in}}{12 \text{ in/ft}} \cdot 29000 \text{ ksi}}{0.7 \cdot 50 \text{ ksi}} \cdot \sqrt{\frac{0.81 \text{ in}^4 \cdot 1}{68.4 \text{ in}^3 \cdot 17.4 \text{ in}}} + \sqrt{\left(\frac{0.81 \text{ in}^4 \cdot 1}{68.4 \text{ in}^3 \cdot 17.4 \text{ in}}\right)^2 + 6.76 \cdot \left(\frac{0.7 \cdot 50 \text{ ksi}}{2.718}\right)^2}$$
$$\therefore L_r = 1215 \text{ ft}$$

$$\begin{split} M_{ncr} &= C_b \cdot \left(M_p - \frac{\left(M_p - \frac{0.7 \cdot F_y \cdot S_x}{12 \text{ in/ft}} \right) \cdot L_b - L_p}{L_r - L_p} \right) \\ &= 1 \cdot \left(326.7 \text{ kip} - \text{ft} - \frac{\left(326.7 \text{ kip} - \text{ft} - \frac{0.7 \cdot 50 \text{ ksi} \cdot 68.4 \text{ in}^3}{12 \text{ in/ft}} \right) \cdot 20 \text{ ft} - 0.04343 \text{ ft}}{1215 \text{ ft} - 0.04343 \text{ ft}} \right) \\ & \therefore M_{ncr} = 324.6 \text{ kip} - \text{ft} \end{split}$$

$$\begin{split} M_{nltb} &= \min{(M_{ncr}, M_p)} = \min{(324.6 \text{ kip} - \text{ft}, 326.7 \text{ kip} - \text{ft})} \\ &\therefore M_{nltb} = 324.6 \text{ kip} - \text{ft} \end{split}$$
 [AISC Eq. F2-2]

1.5. Controlling Strength

 $\rightarrow L_p < L_b \leq L_r$

Design flexural strength of the section:

$$\begin{split} \phi M_n &= \phi_b \cdot \min\left(M_{ny}, M_{nltb}\right) = 0.9 \ \cdot \min\left(326.7 \text{ kip} - \text{ft}, 324.6 \text{ kip} - \text{ft}\right) \\ & \therefore \phi M_n = 292.1 \text{ kip} - \text{ft} \end{split}$$

 $Check M_u \leq \phi M_n$ 30 kip - ft \leq 292.1 kip - ft $\therefore OK$